
Tom Schindl
Tom.schindl@bestsolution.at

http://www.bestsolution.at
http://tomsondev.bestsolution.at

Innsbruck, Austria

e4 – Adopt the
programming model

Eclipse Summit Europe 2010
Thursday, November 4th , 2010

e4 – About Me

 Founder and Owner of
BestSolution.at

 Eclipse Committer
 e4
 Platform UI
 EMF

 Projectlead
 Nebula
 UFaceKit

e4 – The platform of the future
© 2010 by Tom Schindl, Innsbruck, Austria. Made available under the EPL v1.0

e4 – The target

 Target
 Maintain one piece of code with runs in 3.x

and 4.x SDK and ideally in any application
built ontop of the Eclipse 4.0 Application
Platform

 Example
 The Workbench Modeleditor shiping with

Eclipse 4.0

E4 - ModelEditor

E4 - ModelEditor

e4 – 2 ways of SingleSourcing

 Write 3.x ViewParts, EditorParts
using only public APIs
 Drawback: You'll always need to run with the

Compat Layer in 4.0

 Adopt the Eclipse 4.0 Programing
model
 Advantage: You create reuseable components

for Eclipse 4.0 and Eclipse 3.x

e4 – 4.0 techs for 3.x

 Many of the things worked on in
the 4.0 stream work also in 3.x
 CSS-styling and theming of internal Part

contents works in 3.6
 DI works in 3.x
 XWT works in 3.x
 …

e4 – 4.0 techs for 3.x

 Hard to port from 4.0
 Handler stuff (@CanExecute)

 Impossible to port from 3.x
 Modeled Workbench
 Totally flexible rendering

e4 – How to single source

 View/Editor content is part of a
POJO

 No reference on 3.x nor 4.x API
 e.g. No direct reference to the selection

service
 e.g. No direct reference to ViewSite (e.g. to

access workbench services)

 Use broker services which are
injected into your POJO

e4 – Bundle Structureing

 com.mycompany.views:
 A bundle with no org.eclipse.ui

dependencies. Allowed dependencies:
 org.eclipse.core.*
 javax.inject
 org.eclipse.e4.ui.di

 com.mycompany.views.e3:
 A bundle to register POJOs in a 3.x world

 e.g. usage of views-Extension Point, editors-
Extension Point

e4 – Workbench Parts

 ViewPart
 Easy:

 createPartControl()
 setFocus()

 Medium:
 Selection propagation

e4 – Workbench Parts

 EditorPart
 Easy

 createPartControl()
 setFocus()

 Medium
 Selection propagation

 Advanced
 Abstraction of the IEditorInput
 Dirty Lifecycle

e4 – ViewParts

public class SampleView extends ViewPart {

 private TableViewer viewer;

 @Override
 public void createPartControl(Composite parent) {
 viewer = new TableViewer(parent, SWT.BORDER);
 }

 @Override
 public void setFocus() {
 viewer.getControl().setFocus();
 }
}

 A view in 3.x

e4 – ViewParts

public class SamplePOJOView {

 private TableViewer viewer;

 @Inject
 public SamplePOJOView(Composite parent) {
 viewer = new TableViewer(parent, SWT.BORDER);
 }

 @Focus
 public void setFocus() {
 viewer.getControl().setFocus();
 }

 public static void main(String[] args) {
 // Create Shell
 }
}

 A view in 4.0

e4 – ViewParts

 Use the Eclipse 4.0 POJO in 3.x
public class SampleView extends ViewPart {

 private SamplePOJOView pojo;

 @Override
 public void createPartControl(Composite parent) {
 pojo = new SamplePOJOView(parent);
 }

 @Override
 public void setFocus() {
 pojo.setFocus();
 }
}

e4 – EditorParts

 Similar to ViewPart
 createPartControl()
 setFocus()

 Problem
 IEditorInput: Would give us a dependency on

org.eclipse.ui – Need to define a broker
services

E
di

to
rP

oj
o

Fr
am

ew
or

k

e4 – EditorParts

IE
di

to
rI

np
ut

II
np

ut
B

ro
ke

r

e4 – Hiding IEditorInput

 Example for EMF-Resource
public interface IEMFResource {
 public Resource getResource();
}

public class EMFEditorResource implements IEMFResource {
 private URI uri;

 public EMFEditorResource(IEditorInput input) {
 uri = Util.getURI(input); // from emf.edit
 }

 public Resource getResource() {
 ResourceSet set = new ResourceSetImpl();
 return set.createResource(uri);
 }
}

e4 – Hiding IEditorInput

public class TestEditor extends EditorPart {
 private EMFEditorResource resource;

 @Override
 public void init(IEditorSite site, IEditorInput input)

throws PartInitException {
 resource = new EMFEditorResource(input);
 }

 @Override
 public void createPartControl(Composite parent) {
 SamplePOJOView view = new SamplePOJOView(parent, resource);

 }

 Example for EMF-Resource

e4 – The forward compat layer

 Gives you access to
 DI of OSGi-Services
 Brokers for

 Clipboard
 DirtyState
 Selection

 Part of e4 Tooling download
 org.eclipse.e4.tools.compat
 org.eclipse.e4.tools.services

e4 – The forward compat layer

 How to adopt it

 Example
 The e4 workbench model editor

public class E4WorkbenchModelEditor extends DIEditorPart<ApplicationModelEditor> {
 public E4WorkbenchModelEditor() {
 super(ApplicationModelEditor.class, COPY|CUT|PASTE);
 }
}

e4 – The forward compat layer

 Make it available through Injection

public class XMIResourceFunction extends ContextFunction {
 public Object compute(final IEclipseContext context) {
 final IEditorInput input = context.get(IEditorInput.class);

 URI resourceURI = EditUIUtil.getURI(input);
 XMIModelResource resource = new XMIModelResource(resourceURI);

 return resource;
 }
}

e4 – The forward compat layer

 Things proposed for 4.1
 Support for EventBroker
 Support for Memento stuff
 Support for Handlers (@Execute)
 Access to the „20 Things“

E4 - Links

 My Blog
http://tomsondev.bestsolution.at

 e4 wiki
http://wiki.eclipse.org/E4

 Mail
tom.schindl@bestsolution.at

http://tomsondev.bestsolution.at/
http://wiki.eclipse.org/E4
mailto:tom.schindl@bestsolution.at

THE
END

	Advanced Programming Techniques with EMF and Eclipse Databinding
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25

