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e4 – About Me

 Founder and Owner of 
BestSolution.at

 Eclipse Committer
 e4
 Platform UI
 EMF

 Projectlead
 Nebula
 UFaceKit
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e4 – The target

 Target
 Maintain one piece of code with runs in 3.x 

and 4.x SDK and ideally in any application 
built ontop of the Eclipse 4.0 Application 
Platform

 Example
 The Workbench Modeleditor shiping with 

Eclipse 4.0



E4 - ModelEditor



E4 - ModelEditor



e4 – 2 ways of SingleSourcing

 Write 3.x ViewParts, EditorParts 
using only public APIs
 Drawback: You'll always need to run with the 

Compat Layer in 4.0

 Adopt the Eclipse 4.0 Programing 
model
 Advantage: You create reuseable components 

for Eclipse 4.0 and Eclipse 3.x



e4 – 4.0 techs for 3.x 

 Many of the things worked on in 
the 4.0 stream work also in 3.x
 CSS-styling and theming of internal Part 

contents works in 3.6
 DI works in 3.x
 XWT works in 3.x
 …



e4 – 4.0 techs for 3.x 

 Hard to port from 4.0
 Handler stuff (@CanExecute)

 Impossible to port from 3.x
 Modeled Workbench
 Totally flexible rendering



e4 – How to single source

 View/Editor content is part of a 
POJO

 No reference on 3.x nor 4.x API
 e.g. No direct reference to the selection 

service
 e.g. No direct reference to ViewSite (e.g. to 

access workbench services)

 Use broker services which are 
injected into your POJO



e4 – Bundle Structureing

 com.mycompany.views: 
 A bundle with no org.eclipse.ui 

dependencies. Allowed dependencies:
 org.eclipse.core.*
 javax.inject
 org.eclipse.e4.ui.di

 com.mycompany.views.e3: 
 A bundle to register POJOs in a 3.x world

 e.g. usage of views-Extension Point, editors-
Extension Point



e4 – Workbench Parts

 ViewPart
 Easy:

 createPartControl()
 setFocus()

 Medium:
 Selection propagation



e4 – Workbench Parts

 EditorPart
 Easy

 createPartControl()
 setFocus()

 Medium
 Selection propagation

 Advanced
 Abstraction of the IEditorInput
 Dirty Lifecycle



e4 – ViewParts

public class SampleView extends ViewPart {

  private TableViewer viewer;

  @Override
  public void createPartControl(Composite parent) {
    viewer = new TableViewer(parent, SWT.BORDER);
  }

  @Override
  public void setFocus() {
    viewer.getControl().setFocus();
  }
}

 A view in 3.x



e4 – ViewParts

public class SamplePOJOView {

  private TableViewer viewer;

  @Inject
  public SamplePOJOView(Composite parent) {
    viewer = new TableViewer(parent, SWT.BORDER);
  }

  @Focus
  public void setFocus() {
    viewer.getControl().setFocus();
  }

  public static void main(String[] args) {
    // Create Shell
  }
}

 A view in 4.0



e4 – ViewParts

 Use the Eclipse 4.0 POJO in 3.x
public class SampleView extends ViewPart {

  private SamplePOJOView pojo;

  @Override
  public void createPartControl(Composite parent) {
    pojo = new SamplePOJOView(parent);
  }

  @Override
  public void setFocus() {
    pojo.setFocus();
  }
}



e4 – EditorParts

 Similar to ViewPart
 createPartControl()
 setFocus()

 Problem
 IEditorInput: Would give us a dependency on 

org.eclipse.ui – Need to define a broker 
services
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e4 – Hiding IEditorInput

 Example for EMF-Resource
public interface IEMFResource {
  public Resource getResource();
}

public class EMFEditorResource implements IEMFResource {
  private URI uri;

  public EMFEditorResource(IEditorInput input) {
    uri = Util.getURI(input); // from emf.edit
  }

  public Resource getResource() {
      ResourceSet set = new ResourceSetImpl();
      return set.createResource(uri);
  }
}



e4 – Hiding IEditorInput

public class TestEditor extends EditorPart {
  private EMFEditorResource resource;
  
  @Override
  public void init(IEditorSite site, IEditorInput input)

throws PartInitException {
    resource = new EMFEditorResource(input);
  }

  @Override
  public void createPartControl(Composite parent) {
    SamplePOJOView view = new SamplePOJOView(parent, resource);

  }

 Example for EMF-Resource



e4 – The forward compat layer

 Gives you access to
 DI of OSGi-Services
 Brokers for

 Clipboard
 DirtyState
 Selection

 Part of e4 Tooling download
 org.eclipse.e4.tools.compat
 org.eclipse.e4.tools.services



e4 – The forward compat layer

 How to adopt it

 Example
 The e4 workbench model editor

public class E4WorkbenchModelEditor extends DIEditorPart<ApplicationModelEditor> {
  public E4WorkbenchModelEditor() {
    super(ApplicationModelEditor.class, COPY|CUT|PASTE);
  }
}



e4 – The forward compat layer

 Make it available through Injection

public class XMIResourceFunction extends ContextFunction {
  public Object compute(final IEclipseContext context) {
    final IEditorInput input = context.get(IEditorInput.class);

    URI resourceURI = EditUIUtil.getURI(input);
    XMIModelResource resource = new XMIModelResource(resourceURI);

    return resource;
  }
}



e4 – The forward compat layer

 Things proposed for 4.1
 Support for EventBroker
 Support for Memento stuff
 Support for Handlers (@Execute)
 Access to the „20 Things“



E4 - Links

 My Blog 
http://tomsondev.bestsolution.at 

 e4 wiki
http://wiki.eclipse.org/E4

 Mail
tom.schindl@bestsolution.at 

http://tomsondev.bestsolution.at/
http://wiki.eclipse.org/E4
mailto:tom.schindl@bestsolution.at
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